منابع مشابه
Electromechanical properties of suspended graphene nanoribbons.
Graphene nanoribbons present diverse electronic properties ranging from semiconducting to half-metallic, depending on their geometry, dimensions, and chemical composition. Here we present a route to control these properties via externally applied mechanical deformations. Using state-of-the-art density functional theory calculations combined with classical elasticity theory considerations, we fi...
متن کاملPiezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors
Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here, we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive p...
متن کاملTransfer-free batch fabrication of large-area suspended graphene membranes.
We demonstrate a process for batch production of large-area (100-3000 microm(2)) patterned free-standing graphene membranes on Cu scaffolds using chemical vapor deposition (CVD)-grown graphene. This technique avoids the use of silicon and transfers of graphene. As one application of this technique, we fabricate transmission electron microscopy (TEM) sample supports. TEM characterization of the ...
متن کاملControlled ripple texturing of suspended graphene and ultrathin graphite membranes.
Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and s...
متن کاملPiezoconductivity of gated suspended graphene
We investigate the conductivity of graphene sheet deformed over a gate. The effect of the deformation on the conductivity is twofold: The lattice distortion can be represented as pseudovector potential in the Dirac equation formalism, whereas the gate causes inhomogeneous density redistribution. We use the elasticity theory to find the profile of the graphene sheet and then evaluate the conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today
سال: 2012
ISSN: 1369-7021
DOI: 10.1016/s1369-7021(12)70114-1